
Department of Computer Science

Submitted in part fulfilment for the degree of BEng

Enhancing Image Retrieval in
Natural Language Processing

Applications

Thomas Crispin Pollak

2/5/2023

Supervisor: Adrian Bors



ACKNOWLEDGEMENTS

I’d like to thank my supervisor Adrian Bors, for all his help and
feedback when writing this dissertation.



STATEMENT OF ETHICS

The dataset used in the paper is available for academic use. No
personally identifiable data is present in the dataset. All authors who
made significant contributions to this paper have been
acknowledged.



TABLE OF CONTENTS

Executive Summary 8
1 Introduction 1
2 Literature Review 3

2.1 Development of Computer Vision Models 3
2.2 Development of k-Nearest-Neighbour Indexes 5
2.3 ImageNet DET Object Detection Dataset 8
2.4 Summary 8

3 Methodology 9
3.1 Vision Transformer Architecture 9

3.1.1 Multi-Head Self-Attention 10
3.2 CLIP Training Process 10
3.3 CLIP Model Factors 11
3.4 Approximate Nearest Neighbour Index Factors 13

4 Implementation 14
4.1 Retrieval Pipeline 14

4.1.1 Index Construction 14
4.1.2 Querying 14

4.2 Model & Index Implementation 15
4.3 ImageNet DET Object Detection Dataset Integration 15
4.4 Approximate Nearest Neighbour Implementations 16

4.4.1 Annoy Index Hyperparameters 16
4.4.2 Flat L2 Index Hyperparameters 17
4.4.3 HNSW Index Hyperparameters 17

5 Results 18
5.1 Evaluating CLIP Inference 18
5.2 Evaluating CLIP Model Performance 19

5.2.1 ViT vs ResNet 20
5.2.2 Angular Distance Threshold 21

5.3 Evaluating ANN Indexes 23
5.3.1 Annoy Index Results 23

4



5.3.2 HNSW Index Results 25
5.3.3 Flat L2 Index Results 27

5.4 Summary 27
6 Conclusion 29

6.1 Architectural improvements 30
6.2 Further research in other mediums 30

7 Appendices 31
Appendix 1 SQL Schema 31
Appendix 2 Annoy Single Index Query Time 33
Appendix 3 HNSW Binary Size 34
Appendix 4 Number of Trees Preliminary Analysis 35
Appendix 5 Comparing Binary size of the indexes 35
Appendix 6 Analysing CLIP Embeddings 36
Appendix 7 Annoy Single Index Load Time 37

Bibliography 38

5



TABLE OF FIGURES

Figure 2.1: Residual “skip” connection. Taken from [47] 4
Figure 2.3: Illustration of random projections in two-dimensional
space. Taken from [48] 6
Figure 2.3: Illustration of layers of a HNSW index. Taken from [50] 8
Figure 3.1: Vision Transformer model overview. Diagram taken from
[4] 9
Figure 3.2: Summary of CLIP training. Diagram from [6] 10
Figure 4.1: Illustration of image retrieval pipeline 14
Figure 5.1: Top 5 Angular Distances of ViT-B/16 Image embeddings
to each of the 200 ImageNet labels. 18
Figure 5.2: ROC Graph of CLIP models (up and to the right is better)
21
Figure 5.3: F1 Score of CLIP models over angular distance
threshold 22
Figure 5.4: Accuracy vs index size and max results. 23
Figure 5.5: Annoy build and vector add times vs index size. 23
Figure 5.6: Annoy query vs index size & max results 24
Figure 5.7: M vs Accuracy 25
Figure 5.8: HNSW Build Times 25
Figure 5.9: HNSW query times vs M & Max results 26
Figure 5.10: Flat L2 index query times vs max results. 27
Figure 7.1: Image retrieval SQL schema 32
Figure 7.2: Single index query times vs index size & max results 33
Figure 7.3: Effect of number of trees on search time. 35
Figure 7.4: Top 5 labels for each of the images (ViT-B/32), illustrating
the effect of NLP in image retrieval. 36
Figure 7.5: Single index load time 37

6



TABLE OF TABLES

Table 5.1: CLIP model results on ImageNet DET Object Detection
Validation Dataset. 19
Table 5.2: AUC-ROC of CLIP models 21
Table 5.3: Flat L2 Index build times 27
Table 5.4: Single index time query time for 1000 results 28
Table 7.1: Effect of M on HNSW index size 34
Table 7.2: Built index binary size 35

7



Executive Summary

Executive Summary
The increasing amount of images and digital media available today
has led to a growing demand for efficient and general methods to
retrieve relevant images from large heterogeneous image databases.

This dissertation proposes a novel image retrieval approach
combining natural language processing (NLP) and computer vision,
aiming to deliver a powerful image retrieval system capable of
searching image databases using any natural language query. I
leverage OpenAI’s Contrastive Language-Image Pretraining (CLIP)
multimodal model to predict the similarity between an image and
text query, and integrate this with an Approximate k-nearest
neighbour (ANN) index to scale to tens of thousands of images. This
approach aims to provide an intuitive and powerful search
experience, not bound by the constraints of a predetermined set of
labels or categories.

This research will assess the effectiveness of the image retrieval
system through the merits and tradeoffs of different model
architectures and ANN index algorithms, considering factors such as
inference speed, model size, accuracy, recall, build time and query
time. The significance of these factors may vary depending on the
objectives of the production system. By exploring these aspects,
this study aims to provide an image retrieval guide for different use
cases.

8



1 Introduction
Conventional image search methods often rely on predetermined
labels or metadata associated with images, which can limit their
ability to capture the nuanced and diverse range of content. The
growing number of large and varied image databases has required
the development of a powerful and efficient image search method to
enable users to retrieve relevant content that can not only handle the
sheer volume of images, but also cater to the diverse queries users
may have. Examples of such systems could include: video search on
a CCTV camera, Google Image Search, Instagram recommendation
algorithms and others.

In this dissertation, I propose an innovative approach to image
retrieval that capitalises on the recent advancements in multimodal
(image-text) models. In 2021, OpenAI published the multimodal CLIP
model that could predict the similarity between images and text. The
model demonstrated remarkable capability on a variety of tasks,
most notably zero-shot classification, where it was able to predict
classes and categories not present in the training dataset. This
surpasses the capabilities of any previous architecture, and remains
state-of-the-art (SOTA) today. Previous models focused on a narrow
set of categories, and were ineffective at classifying images not
represented in their datasets.

The success of the CLIP model can be attributed to the extensive
range of images in CLIP's training dataset and the generality of its
natural language processing (NLP) input. Consequently, this makes
CLIP an ideal candidate for image retrieval, as further explored in
this dissertation. To develop an efficient and effective NLP-based
image retrieval system, I propose the integration of a CLIP model
with an approximate k-nearest-neighbour (ANN) index, a well
established method for efficiently searching for similar items in
high-dimensional data.

Using these two components, I will show it is possible to create a
fast and effective NLP-based image search system. I will compare
different model architectures and assess the effectiveness of each
one in terms of inference speed, model size and accuracy. Further, I
will examine various ANN index algorithms to determine their
respective strengths and weaknesses in terms of recall, build time,
query time, and binary size.

1



The significance of these factors may vary depending on the specific
production use case. The ImageNet DET object detection dataset
will serve as the basis for evaluation of the proposed image retrieval
system.

Chapter 2 will cover the history and research of vision models, the
introduction of CLIP with zero-shot prompting. It will introduce a
variety of ANN index algorithms and the dataset we will be using to
evaluate our implementation.

My methodology in chapter 3 will explore the Vision Transformer and
CLIP training process further, as well as the model and index factors
that will affect the system’s performance.

Chapter 4 introduces the implementation of the dual-stage image
retrieval pipeline, consisting of building and querying stages. I will
discuss the various hyperparameters that can be adjusted in the
ANN indexes to give optimal performance for each of the metrics we
are evaluating for. I will also discuss the integration of the dataset
within the pipeline, and the generic implementation of multiple
models and ANN index libraries using a wrapper and a public API
interface.

Chapter 5 will statistically evaluate the model and index
performance using the factors discussed in the methodology,
comparing the performance between the Vision Transformer and
ResNet architecture. I also assess the efficacy of each ANN index
with respect to the image retrieval task.

Finally, chapter 6 will conclude the paper, and discuss potential
improvements to my methodology and implementation, as well as
limitations and potential areas of further research.

2



2 Literature Review
This literature review will provide a comprehensive overview of the
history and SOTA methods for NLP-based image retrieval, examining
the evolution of image classification methods, the introduction of the
vision transformer and the development of multimodal image-text
models. Further, it explores a variety of approximate nearest
neighbour algorithms, and evaluates their effectiveness for this
application. Finally, the literature review will provide an overview of
the ImageNet DET Object Detection dataset, used to evaluate the
performance of the system.

2.1 Development of Computer Vision Models

Convolutional Neural Networks (CNN) Previous to the invention of
the transformer [1], SOTA computer vision models used CNNs. First
introduced in 1998, Lenet-5 [2] utilised a mathematical operation
called a “convolution” to detect different local features of an image,
such as edges, corners and textures. This is the process of
multiplying a small matrix (filter) with part of the image, and summing
the result. The filter slides over the image producing a feature map.
A neural network can use this These features are processed through
a fully connected linear layer network to classify features into a set
of classes.

In 2012, CNNs proved their effectiveness in image recognition tasks
with AlexNet [3], the first CNN to win the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [4]. This competition was the
benchmark for computer vision models at the time.

Residual Networks In a conventional CNN, layers are stacked
sequentially, with each layer learning a representation of the input
data. As the depth of the network increases, the vanishing gradient
problem [32] arises, where the gradient of the loss function with
respect to the network weights becomes very small, the network will
only update the weights by a minimal increment, causing the
network to not train effectively. Residual networks (ResNets) [34]
mitigate the issue by adding “skip” connections that bypass certain
layers. These skip connections effectively simplify the network,
reducing the impact of vanishing gradients by allowing
backpropagation to flow uninterrupted from the output to the input
through these skip connections.

3



Figure 2.1: Residual “skip” connection. Taken from [47]

In this paper, ResNets are described in the form: RN50x4. This
denotes that it is using the Resnet-50 architecture, 1 input layer, 48
convolution layers, and 1 output layer, scaled up 4x according to the
EfficientNet [33] scaling rule.

Vision Transformer (ViT) [5] Vision transformers (ViT) have recently
emerged as a powerful method to capture semantic information in
images. By 2022, vanilla ViTs had outperformed SOTA ResNets in
both accuracy [33] and efficiency [39]. One drawback of ViTs is the
considerably longer training time compared to CNNs, as the
convolution operation is specifically designed to capture local
patterns, giving it an inherent inductive bias towards spatial locality
in an image. ViTs lack this bias and must learn to recognise local
patterns and hierarchical relationships from the data itself. As a
consequence ViT models must be pre-trained on a significantly
larger dataset than their CNN counterparts. The ViT architecture is
further discussed in Section 3.1 of the Methodology.

Throughout this paper I will use the abbreviation ViT-B/32 to
describe ViT models. This notation indicates that the model is using
the ViT of base model size, referring to the number of parameters,
with the /32 denoting the model uses 32 patches.

CLIP In 2021, OpenAI released the CLIP (Contrastive
Language-Image Pre-Training) model [6], which changed how we
thought of visual recognition. Prior to the advent of CLIP, a SOTA
vision model would predict a fixed set of predetermined object
categories. In contrast, the CLIP paper introduced a multimodal NLP
approach that allowed the user to query an image with anything that
can be described in a text box. This flexible approach performed
well in a variety of tasks, most notably zero-shot classification,
predicting a class seen zero times in training data. CLIP was
designed to compare natural language directly with images by a dual
encoder trained on 400,000,000 image-text pairs.

4



By predicting the most relevant caption associated with an image,
CLIP learned to predict the similarity between an image and an
arbitrary piece of text. CLIP has been trained with both the ResNet
and ViT architecture, however in modern applications the ViT
architecture has proven to be more effective. This dissertation aims
to provide a comprehensive comparison of both architectures.

CLIP Retrieval The project clip-retrieval [7] is a production grade
implementation of NLP search on an ANN database. It was
developed by the LAION group and used to filter the Laion-5B
dataset [8]. The project uses the autofaiss library [9] for indexing and
a variety of CLIP language models from OpenCLIP [35].

Leaner and Faster [25] This paper described a CLIP image-text
encoder in which the training was divided into a two-stage
framework, training the image and text encoder separately, freezing
the training of the text encoder while training the image encoder, and
vice versa. The paper used a ViT-S/16 to generate an image
embedding, with TinyBert [36] for text, using knowledge distillation
[26] from the CLIP ViT-B/32 model to achieve better performance.
This paper claimed a 61% reduction in model size, and up to
1.6x/2.9x image/text inference speedup over the original OpenAI
ViT-B/32 model, with similar accuracy.

This technique allowed the model to be split into separate image
and text encoder models, allowing the models to be loaded
separately, limiting memory usage. Using the image encoder, we
can generate image embeddings to insert into the ANN index, and
query using the text encoder. For the duration of this paper, I will use
the abbreviation “LaF” to refer to this model.

2.2 Development of -Nearest-Neighbour Indexes𝑘
Approximate k-nearest-neighbour (ANN) indexes are a popular
indexing method for vector retrieval that can be used to efficiently
search large high-dimensional datasets. They address a pervasive
challenge in high-dimensional data analysis known as the Curse of
Dimensionality [11, 12]. First coined by Richard E. Bellman, when
discussing the difficulties of using a brute force grid search to
optimise a function with too many input variables, it describes the
problem of analysing data with a large number of features. As
dimensionality increases, distances between data points tend to
converge, tending to all become equidistant from each other,
complicating the process of clustering or analysing the data.

5



In the context of NLP-based image retrieval, ANN indexes can be
used to index image embeddings, providing a fast and efficient
method for retrieving relevant images based on NLP queries. ANN
algorithms employ a variety of techniques to search for data points
in high-dimensional data:

Linear Search [13] Comparing the query vector to every other
vector in the index. This is an exhaustive k-nearest-neighbour search
and has perfect recall, but requires linear query time over the size of
the dataset. This is also known as a “Flat index”.

Grid Search [13] Subdivide the search space into a grid, where each
cell in the grid representing the space closest to point . This𝑐

𝑖
𝑖

requires exponential space and time in the dimensionality of the
dataset, and so is unviable for our high-dimensional use case.

Locality Sensitive Hashing [11] This involves applying multiple
hash functions to map data points into buckets, with the objective of
ensuring that data points in close proximity are placed in the same
bucket, effectively maximising hash collisions [37] of similar vectors.
To search the index, the query is hashed to locate the bucket
containing the closest points. This gives theoretical guarantees of
sub-linear query time, but comes at the cost of high memory usage.

Spotify Annoy Library [16] A tree based algorithm, that constructs a
binary tree using random projection [17], subdividing the search
space in two randomly, recursively for a given number of trees.
Random projection can be used to approximate cosine distance [18,
48]. This is repeated multiple times to create a forest of many trees,
mitigating some of the randomness splitting the search space
randomly may cause. When querying the index, each of the trees in
the forest undergoes binary search to its leaf, and the distances from
the query point to each point in the index space is calculated
exhaustively.

Figure 2.3: Illustration of random projections in two-dimensional
space. Taken from [48]

6



Annoy has several notable features: it uses static files as indexes,
allowing the creation of indexes to be decoupled from loading them.
However, because of the static nature, once an index has been built
no more data can be added to it. The Annoy indexes can be rapidly
loaded and mapped into memory, only requiring a mmap [20]
operation on the CPU. Additionally the index claims to have a
smaller memory footprint compared to ANNs discussed later in this
paper.

Annoy is designed for dense, low dimensional data (<100
dimensions) in contrast to other ANNs, which cater to sparse data
and are fairly agnostic to dimensionality. This may prove to be a
disadvantage for the index, as our models use a minimum of 512
dimensions, and could lead to Annoy using more memory and incur
a larger runtime cost.

Hierarchical Navigable Small World Graphs (HNSW) [21, 22] is a
graph-based algorithm, where vertices are linked based on proximity
with each other. This approximation is built around a probability skip
list [23], a sorted linked list that allows for efficient insertion and
querying. A skip list constructs layers, where the top layers contain
few vertices far apart from each other to allow fast navigation across
the graph. When we reach the first node larger than the query on
one layer, we move to the layer below. As we descend the layers,
the precision of the list increases until the bottom layer, which is the
entire linked list. Each node is given a random number which
dictates how many layers the node will occupy. This makes the list a
probabilistic data structure, with an average time complexity of

for search and insertion.𝑂(𝑙𝑜𝑔 𝑛)

The HNSW graph uses this concept, but instead of a sorted linked
list, uses a proximity graph. At the top layer, the graph is very
low-degree. At the bottom layer, the graph has a very high-degree.
We use a greedy search algorithm [24] to search the HNSW graph.
We begin at an entry point, and choose the vertex closest to the
query vector, until we find a vertex with no closer vertices. When no
closer vertices are found, we descend to the next layer.

7



Figure 2.3: Illustration of layers of a HNSW index. Taken from [50]

HNSW has the advantage of batch querying, where multiple queries
can be run at the same time. However, HNSW graphs generally have
high memory usage. This type of index is advantageous in highly
clustered embeddings, a characteristic of many real world datasets.

2.3 ImageNet DET Object Detection Dataset

I use the ImageNet DET Object Detection dataset [4] to evaluate the
performance of the CLIP models and indexes. The dataset consists
of a diverse collection of 200 basic-level categories, such as "dog"
or "plane." The dataset labels are constructed upon the WordNet
synset [31], a lexical database for English, where related concepts
are arranged in a hierarchical tree fashion. The DET Object Detection
dataset is distinct from the more conventional ImageNet 21K dataset
[38], containing over 21,000 categories. I chose this dataset as my
initial intention was to use an object detector paired with the CLIP
model, however this no longer in the scope of this paper

2.4 Summary

This literature review provided an overview of the history and SOTA
methods for NLP-based image retrieval. We observed that the
development of image classification models and the introduction of
the vision transformer allowed for more efficient and effective
processing of images, outperforming ResNets, the previous SOTA.
Additionally, the release of the CLIP model marked a turning point in
zero-shot visual recognition, and proved more flexible through a
multimodal natural language approach. The development of the
clip-retrieval project by the LAION group shows the practical
application of NLP search on an ANN database and its potential for
large-scale image retrieval.

Finally, this research evaluated multiple ANN algorithms to explore
the feasibility of employing ANN indexes with a CLIP model to
enhance image retrieval in NLP applications

8



3 Methodology
In this paper I will evaluate the efficacy of using pretrained CLIP
models and ANN indexes in the development of a robust image
retrieval system. The evaluation will involve a comparative analysis
of the ResNet and ViT with respect to inference time and accuracy,
and use precision, recall with the F1 score to determine an optimal
binary classification threshold.

Furthermore, I will examine the performance of Annoy [16], HNSW
[21, 22] and Flat L2 [13] indexes in terms of recall, build time, query
time and binary size. By statistically adjusting the hyperparameters
of each index, I hope to achieve an optimal configuration for each
metric. Additionally, I will assess the suitability of these indexes for
the efficiency and scalability required for an image retrieval system. I
will use the PyTorch [52] library to evaluate the models in this paper,
and the Annoy and Faiss [51] libraries to evaluate the indexes.

A limitation of this study is that I will only use a single dataset for
evaluation, ImageNet DET Object detection. The performance of the
models may vary on the dataset used, and index implementations
may be effective on datasets of different sizes. We will discuss the
implications of this further in the conclusion.

3.1 Vision Transformer Architecture

Figure 3.1: Vision Transformer model overview. Diagram from [4]

The ViT model transforms an image into a sequence of
non-overlapping patches and linearly embed these into a flat vector.
The patch embeddings are fed into the transformer architecture [1]
with a positional embedding index [1], which captures long-range
dependencies between the patches using multi-head self-attention.

9



3.1.1 Multi-Head Self-Attention

(Equation 1)𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,  𝐾,  𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 𝑄𝐾𝑇

𝑑
𝑘

)𝑉

Self-attention leverages three learnable matrices: Query (Q), Key (K)
and Value (V), derived by multiplying the input tokens with the
respective weight matrices . The self-attention𝑊

𝑄
,  𝑊

𝐾
,  𝑊

𝑉

mechanism is shown in Equation 1. computes the compatibility𝑄𝐾𝑇

between each pair of tokens in the input sequence. The higher the
dot product, the more related the tokens are. Softmax converts

compatibility into attention weights, summing to 1, where 𝑑
𝑘

scales the values to prevent large values from dominating the
softmax and causing vanishing gradients [32]. aggregates the𝑉
information from each of the input tokens with the relative
importance from the softmax. The Transformer further enhances
self-attention with multi-head attention, consisting of multiple
self-attention layers using distinct weight matrices. The outputs are
concatenated and linearly transformed to produce the final
multi-head attention output. The Multi-Head attention can be seen in
the Transformer Encoder in Figure 3.1.

The title of the paper introducing ViTs, “An Image is Worth 16x16
Words” [5], is referencing the idea that an image can be divided into
16x16 patches, where each patch creates a token embedding in the
same way a word would be used in a text-based transformer.

3.2 CLIP Training Process

Figure 3.2: Summary of CLIP training. Diagram from [6]

10



I compare pretrained CLIP models in this paper, trained using a
contrastive loss function, this maximises the similarity between
representations of image-text pairs, while minimising the similarity
with non-corresponding pairs. The models were trained using the
Adam optimizer for 32 epochs on over 400,000,000 image-text
pairs.

Parts 2 & 3 of Figure 3.2 show the evaluation of the CLIP models
with zero-shot prediction. I will be using the same method to
evaluate the models, but with a conjoining ANN index. For each
image, I will compare the embedding with every label in the dataset,
and pick the top elements with the smallest distance.𝑘

While the original CLIP paper uses cosine similarity to measure the
similarity of text and the image embeddings, I will be using angular
distance for comparison for the duration of this paper. These are
fundamentally equivalent metrics ( ). I𝑎𝑛𝑔𝑑𝑖𝑠𝑡 =  𝑎𝑟𝑐𝑐𝑜𝑠(𝑐𝑜𝑠𝑠𝑖𝑚)/𝝅
use angular distance primarily as it is a default distance metric in
Annoy, and used it for subsequent indexes for comparison.

3.3 CLIP Model Factors

This study tests variants of CLIP ViT and ResNet models, including a
smaller derivative “Leaner and Faster” (LaF), distilled from the
original CLIP ViT-B/32 model. I compare the CLIP ViT-B/16 and /32
model to test the impact of reducing the number of patches. Further
I evaluate the ResNet models RN50 and RN50x4, to assess the
effect of EfficientNet scaling laws [33].

I anticipate that the CLIP ViT-L/14 model, with a larger number of
parameters and a smaller patch size to outperform the other models
in accuracy, but also run the slowest. Factors that may affect the
models are as follows:

Inference time The time required to create image embeddings
primarily depends on the number of parameters used in the model,
and the patch size for ViT. The LaF model, being a ViT-S/16, claims a
1.6x faster image inference time compared to the original CLIP
ViT-B/32 model. Conversely, the CLIP ViT-L/14 model, with a larger
number of parameters and smaller patch size, may require a longer
inference time due to increased complexity. From literature review
research, ViT’s should be more computationally efficient and
accurate than ResNets [33, 39], so I expect the base ViTs to
outperform the ResNet models.

11



Memory usage The memory consumption of the models is
influenced by the number of parameters and patch size for ViT
models. I expect the LaF model, with its reduced size, to consume
less memory compared to the ViT-B/32 model. The ViT-L/14 model
may require more memory due to the increased number of
parameters and smaller patch size.

ResNets require less memory than the ViT models, as ViTs are
required to store all pairs of self-attention tokens during inference,
while the ResNets need only to store localised areas of the image in
convolutions. Further, I expect the ViT-B/32 to require more memory
than ViT-B/16, as the increased number of patches requires an
increased number of inputs to the transformers self-attention, which
scales memory quadratically with number of inputs. Unfortunately
due to time constraints I will not evaluate memory usage in this
study.

Accuracy Generally a trade-off with inference time and memory
usage. The LaF model may exhibit a lower accuracy compared to
the CLIP ViT-B/32 model due to its smaller size. By comparing
ViT-B/32 and ViT/16, we will be able to quantify the difference of a
smaller patch size.

The CLIP ViT-L/14 model, with its larger number of parameters and
smaller patch size, is expected to provide a higher accuracy,
representing the upper bound on the performance of the retrieval
project. I expect that ViTs in general to outperform ResNets,
although a larger ResNet model may be able to achieve higher
accuracy than a smaller ViT model.

Dimensionality A model’s dimensionality can affect the recall of the
ANN index. For instance, the Annoy index prefers lower dimensional
dense embeddings, while the HNSW index performs better with
embeddings that can be clustered easily. The LaF and ViT-B model,
with its lower dimensionality, may be more suitable for the Annoy
index.

In contrast, the CLIP ViT-L/14 model has a higher dimensional
embedding which may be more easily clustered, benefiting the
HNSW index. Additionally, some index implementations store only
non-zero features, meaning that sparse high-dimensional data can
result in smaller index sizes.

12



3.4 Approximate Nearest Neighbour Index Factors

Various ANN algorithms have been developed to address a range of
factors. Choosing an appropriate index requires evaluating the
significance of each factor for the specified use case and
determining trade-offs one is willing to make. Factors include:

Build time Index creation and build time are crucial if there are few
queries compared to the size of the index. If this is the case, many of
the ANN algorithms will take longer to build the index than to query.

Load time The speed in which an index can be loaded from disk to
RAM, important if it is necessary to split a dataset into multiple
smaller indexes.

Search time For a use case with a large volume of queries, search
time could be essential. This often comes as a penalty to build time
and recall.

Hardware resources Considerations include memory usage during
both the build and querying process, as well as whether the index
can be split up or otherwise lazily loaded. The size of the index when
saved to disk could also be taken into account. Finally, some
libraries can take advantage of GPUs, while others are designed for
single or multi-core CPUs

Recall requirements Many of the algorithms used in this paper
provide approximations of distances. If perfect recall is essential for
an index, a Flat index should be considered.

Access patterns Some indexes support batch querying, while
others may be able to share the index across processes. An
important consideration should be to determine if an index can be
incrementally added to, or remain fixed once built, which may suit
different use cases. Finally, some indexes have preferences for
different data dimensionalities. Our CLIP embeddings are high
dimensional, which may be a disadvantage to certain indexes such
as Annoy.

13



4 Implementation
My implementation consists of two stages. The first uses a CLIP
model to generate vector embeddings for each image in the dataset,
with each image embedding being inserted into the ANN index and
a database for efficient retrieval. In the second stage, a text query is
encoded into a vector embedding, which is used to search for
similar embeddings in the index.

4.1 Retrieval Pipeline

Figure 4.1: Illustration of image retrieval pipeline

The process of image retrieval comprises two distinct stages: index
construction and querying. Although these stages are executed
independently, optimising one often comes at the expense of the
other. For example, an L2 Flat Index can be quickly constructed and
provides exact matches, but has a slow query time as it requires
linear scanning. On the other hand, HNSW delivers accurate results
and enables for fast queries, but has a longer index construction
time.

4.1.1 Index Construction

To prepare each image in the dataset for retrieval, they undergo
cropping, resizing, and normalisation according to image encoder’s
requirements. The CLIP model transforms the processed image into
a high-dimensional vector embedding, which is inserted into the
ANN index. The image paths and IDs are stored in an SQLite
database, enabling the retrieval of the original image when the ANN
IDs are returned from the query.

4.1.2 Querying

During the query stage, the user's search query is encoded and
utilised to retrieve the most similar items from the index. The𝑛
returned elements’ index IDs are used to locate the original images
from the SQLite database.

14



4.2 Model & Index Implementation

To compare multiple models and ANN libraries, I developed a
wrapper around each library and model, with a common public
interface. This approach enables the encapsulation of specific library
features in the wrapper, taking a config object to adjust the
hyperparameters of the model and index accordingly. This enables
the image retrieval code to be written once while retaining specific
implementations for various libraries.

An SQLite database is used to store complimentary image and index
data. The indexes are stored externally, with references to the index
paths in the database. The index construction and querying
processes are performed as described in Sections 3.3.1 and 3.3.2.
The SQL architecture is further discussed in Appendix 1.

4.3 ImageNet DET Object Detection Dataset
Integration

I utilise the ImageNet DET Object Detection validation dataset to test
the image retrieval system, which contains 20120 images of 200
different classes. I developed the "ImagenetDETDataset" class to
parse the dataset, linking images to their respective labels. Each
label is used to query the dataset with the following prompt: “[label]”.

This can be modified, if instead the dataset consisted of bird
images, the prompt could instead be “A photo of a [label], a type of
bird”. The integration of the ImageNet DET dataset into the retrieval
implementation shows the system’s capability of processing
large-scale, real-world images, serving as a robust benchmark for
evaluating the performance of the ANN libraries and models.

As the CLIP image encoder is trained on images of size 244x244, I
am required to resize and normalise the images into the correct
format for the model.

The images can be sorted by angular distance, which is a measure
of the predicted similarity of the model. Following this we can now
evaluate top 1 and top 5 accuracy of the model, suitable angular
distance threshold values, index recall and more.

15



4.4 Approximate Nearest Neighbour Implementations

In this project, I will evaluate the CLIP model embeddings across a
variety of ANN implementations and libraries. My research will
primarily focus on Spotify’s Annoy library [16] and Faiss’ [51] Flat L2
and HNSW index. I will attempt to adjust the hyperparameters for
these indexes to achieve satisfactory results with respect to the
factors discussed in Section 3.4 of the Methodology.

It is important to note that many of the factors are conflicting;
therefore my aim is to find a balance supported by empirical
evidence. Additionally, this analysis is not exhaustive, as numerous
other index implementations and enhancements may be considered,
such as vector encoding and quantization [40], Google’s Scann
library [41], Locality Sensitive Hashing [11], or using an Inverted File
Index [42].

4.4.1 Annoy Index Hyperparameters

Annoy employs a number of specific hyperparameters that can
impact its performance and recall. These include:

Number of trees Provided at build time, influences the recall, build
time and the index size. A larger number of trees will yield more
accurate results but also result in larger index sizes.

Search k The number of nodes to inspect. Search k offers a runtime
trade-off between better recall and speed. A larger search k will
produce more accurate results but will take longer to run.

Max results When including distances, the Annoy index must
calculate distances to all the closest nodes. This parameter can
affect the overall recall and search time.

Number of indexes The number of indexes used to store the
dataset can have an impact on the performance of the Annoy index.
A higher number of indexes may increase recall, as each index
contains fewer elements, but can also slow down search speeds
due to the switching between indexes and multiple tree searches.
Conversely, a single large index containing all elements may
increase search times but decrease the overall recall. This
hyperparameter must be included as a design decision when
creating the retrieval architecture. I will compare multiple sizes in my
results along with the other hyperparameters.

16



4.4.2 Flat L2 Index Hyperparameters

This is a linear scan through the dataset. It has only a single
hyperparameter:

Max results Increasing the max results leads to increase an in
search time, as the flat index maintains a priority queue [43] for the
closet elements. When replacing an element, it must reorganise𝑘
the queue, where a larger queue requires more computation.

4.4.3 HNSW Index Hyperparameters

Max results Maximum number of elements to return. In some
instances there may not be enough elements to fill the results list,
resulting in fewer elements than max results specified, unlike Annoy
and Flat index. Max results increase search time due to the
increased number of distance calculations and the priority queue
management, similar to the Annoy and Flat indexes.

M Maximum number of neighbours per layer. Larger values of M
lead to a denser graph, resulting in faster search times and higher
recall, but increased memory usage.

efConstruction Size of dynamic list used to store best candidates
during index construction. Larger values lead to a more accurate and
connected graph, increasing recall, but comes at the cost of build
times and memory usage.

efSearch Determines size of dynamic list to store best candidates
found so far. Larger values increase recall, but at the cost of search
time.

17



5 Results
5.1 Evaluating CLIP Inference

Figure 5.1: Top 5 Angular Distances of ViT-B/16 Image embeddings
to each of the 200 ImageNet labels.

The top left image of Figure 5.1 demonstrates the correct
classification of a fox. The other classifications are reasonable, as
they all represent mammals that might inhabit the same
environment. However, the alternate classifications have significantly
larger angular distances than the correct classification.

The top right image showcases the contrastive similarity capabilities
of CLIP. CLIP is trained to bring together similar images and text,
while distancing those that are dissimilar. In this example, a mammal
in the water is considered similar to aquatic animals: “otter”,
“hippopotamus” and “seal” were all positively identified. The correct
class “lizard” was also included in the top 5.

The bottom left image presents an incorrect classification. However,
it is important to note that 4 of the top 5 embeddings had angular
distances 1.35 and above, which would exceed the classification
threshold. While no coffee maker is in the scene, the subjects are
queuing in a coffee shop (JJBean is a coffee chain Vancouver). CLIP
can sometimes infer contextual information about the scene, even
when it is not visually apparent. This is further demonstrated in
Appendix 6. This image has another phenomenon of the CLIP
embeddings. They very rarely give a high similarity with the “person”
label, I believe because of the vague wording.

18



Upon manual inspection of the misclassified images, I found a
considerable number of them were inadequately labelled. In the
bottom right image, the only label is “person”. CLIP correctly
identifies the camel in the image with high similarity, which is
classed as an incorrect classification.

5.2 Evaluating CLIP Model Performance

Model Top 1 Top 5 Inference
time (s)

Model size
(MB)

Emb
Dim

LaF 0.5662 0.7710 1370 229 512

RN-50 0.5982 0.8057 826 244 1024

RN-50x4 0.6333 0.8203 2623 402 640

ViT-B/32 0.6248 0.8180 705 338 512

ViT-B/16 0.6515 0.8355 2117 335 512

ViT-L/14 0.6657 0.8450 14230 890 714

Table 5.1: CLIP model results on ImageNet DET Object Detection
Validation Dataset.

All results run on the CPU of a M1 Macbook Air. GPU results may
vary. I consider factors from Section 3.3 of the Methodology.

Baseline Accuracy Top 1 and top 5 accuracy was assessed
image-by-image, where the closest 1 & 5 images were selected for
evaluation, irrespective of the relative distances. For images with
more than 1 label, positively identifying one label is deemed correct.

ViT-L/14 demonstrated the best performance, with a top 1 accuracy
of 66.57% and a top 5 of 84.50%. I anticipated this outcome as the
model has the largest number of parameters and smallest patch
size. Interestingly, ViT-B/16, performed significantly better than
ViT-B/32, despite having a similar number of parameters, with results
comparable to ViT-L/14.

Inference speed I used the total inference time to embed all 20,120
images in the ImageNet validation dataset. While ViT-L/14
demonstrates the highest accuracy, it also had the longest inference
time. Comparing ViT-B/16 with ViT-B/32, we can evaluate the effect

19



patch size, given all other parameters are equivalent. The smaller
patch size has a higher accuracy, but with 3x the runtime.

The LaF model was the most disappointing, claiming a 1.6x
speedup on image embeddings. In my testing however, LaF
underperformed ViT-B/32 by 1.94x in inference, while also giving a
worse accuracy.

LaF utilises a ViT-S/16 mode and a smaller patch size which may
have a larger performance hit on CPU than if run on a GPU.
Unfortunately, LaF uses operations not yet supported by MPS, the
MacOS GPU framework, so I cannot evaluate the inference time
using a GPU.

Model size Model size serves as a useful heuristic for the number of
parameters. It exhibits a linear relationship with the models in terms
of inference speed and accuracy. As we expect, ViT-L is larger than
ViT-B, and LaF is smallest at 229 MB, using a ViT-S and TinyBert
[36].

Embedding Dimension This can be crucial for some use cases; for
example, Annoy is optimised for low-dimensional data. For other
indexes it is not a significant factor. The dimensionality of the
embedding will also affect the optimal angular distance threshold.

5.2.1 ViT vs ResNet

ViT-B/32 and RN-50 have comparable inference speed, but ViT-B/32
is slightly faster and more accurate, albeit with a larger model size.
The same holds true for ViT-B/16 and RN-50x4; ViT-B/16 is slightly
faster and more accurate, while also having a smaller model size
than RN-50x4. This supports the conclusion by other papers
researched in the literature review, ViTs outperform ResNets in both
accuracy and computational efficiency [33, 39].

Memory usage for each model was not evaluated in this paper, but
may have been in ResNets favour, as explained in my preliminary
analysis in 3.1 Method. This is an area for further research.

20



5.2.2 Angular Distance Threshold

Figure 5.2: ROC Graph w.r.t angular distance of CLIP models (up
and to the right is better)

Figure 5.2 displays the Receiver Operating Characteristic (ROC)
graph of each of the CLIP models, illustrating the trade-off between
precision and recall in the context of binary classification for
determining the presence of a particular label within an image.
Precision and recall represent conflicting objectives; optimising one
comes at the cost of the other. ROC evaluates the model’s ability to
classify images over a range of thresholds.

Model AUC-ROC

LaF 0.3001

RN50 0.4380

RN50x4 0.5053

ViT-B/32 0.4778

ViT-B/16 0.5443

ViT-L/14 0.5840

Table 5.2: AUC-ROC of CLIP models

21



Area Under the Curve of the ROC graph (AUC-ROC) can be used as
a comprehensive performance metric, quantifying the performance
across all threshold values. A higher AUC-ROC value signifies that
the model exhibits superior performance without the need to select
a specific threshold. The distribution follows the Top 1 & 5 accuracy,
where a larger model size and fewer patches yield a higher score.

Figure 5.3: F1 Score of CLIP models over angular distance threshold

A related metric is the F1 score [45], which is the harmonic mean of
precision and recall. This is closely related to ROC, but the goal of
the F1 is to obtain an optimal threshold value that strikes a balance
between these two competing metrics.

The OpenAI models have a tighter F1 distribution, meaning that the
angular distances are dispersed over a smaller range. This can be
advantageous as it provides a clear optimal classification threshold.
I believe this is why LaF performed worse than expected on
AUC-ROC (Table 5.2), with a convex curve on the ROC graph (Figure
5.2). Images distributed over a larger range offer more opportunity
for incorrect classifications, while the OpenAI models can reject
anything outside of the narrow range.

From the F1 graph, we can see how the models are distributed with
their embedding dimension. Embeddings in a higher dimension will
generally be farther away from each other due to the curse of
dimensionality [11, 12]. We can see that the ViT-B models with their
512 dimensions have a peak angular distance threshold at a closer
distance than ViT-L, with 712 dimensions. Conversely, RN50x4 has a
closer distance threshold than RN50, with dimensions 640 and 1024
respectively.

22



5.3 Evaluating ANN Indexes

I used LaF’s 512 dimensional image embeddings to evaluate the
ANN indexes in this study. At the time I was under the impression it
was a faster and more efficient implementation, but I now believe the
distribution of embeddings over a larger angular distance range
(Figure 5.3) may have a negative impact on the approximation
algorithms of Annoy and HNSW indexes.

The performance of the indexes was evaluated on the following
factors: recall, query times, load times and binary size, as specified
in Section 3.4 of the Methodology. Query time refers to the
cumulative time taken to perform all 200 class queries on the
dataset of 20120 images.

5.3.1 Annoy Index Results

Annoy indexes are optimised for dense, low-dimensional vectors.
512 dimensional embeddings are relatively high-dimensional,
however they are the lowest dimension of the embeddings I
evaluated. I will evaluate the above factors according to the Annoy
hyperparameters: max results and number of indexes. Unless
specified otherwise, the number of trees is set to 1024. Search k
defaults to the number of trees (1024) multiplied by the maximum
results. To simplify evaluation, I will use maximum results to evaluate
the effect of both parameters.

Figure 5.4: Accuracy vs index size
and max results.

Figure 5.5: Annoy build and vector
add times vs index size.

Recall Figure 5.4 demonstrates the effect of index size and max
results have on accuracy. We can see that index size exhibits a
negative correlation with recall, counteracted by max results, which

23



also increases search k. Post query each image is filtered for the top
n closest embeddings.

When the number of max results is larger than the number of items
in the index, the distance to every item in the index is calculated,
giving it perfect recall, emulating a Flat index. This can be seen in
Figure 5.4, where the maximum number of results is greater than the
index size, the index has baseline accuracy.

Build Time Figure 5.5 shows the combined build times of all
indexes for each index size. For an index size of 16, the total build
time is longer than an index size of 64 as 16 requires more indexes.
From this plot we can see that the index size that optimises build
time is 512, possibly because the entire index can be stored in
memory rather than lazily loaded (shown in Appendix 7).

I believe this is why indexes larger than 512 take significantly longer
to build. We can also see that index size has no effect on the time to
add each vector to the index. For an index size of 512, index add
time dominates index build time.

Figure 5.6: Annoy query vs index size & max results

Query Time Figure 5.6 shows that in general, a fewer number of
large indexes query quicker than a large number of small indexes. As
we expect, a larger number of max results slows down query time,
as the index must calculate the distances for more elements in the
index, due to the increase in search k.

The fastest query times were obtained from a single index of 20,120
elements, with query times from 5 to 12 seconds. The load times do
not impact the performance at any but the smallest indexes, due to
the accumulation of load times of many indexes.

24



A notable observation is that when the max results are close but not
quite the same as index size, the query time is significantly longer.
This is because it must return almost the entire index, but still sort
some items out with binary tree search. When the max result is
larger than the index size, it can return distances of every item in the
index.

This is evident by the longest query time for an index size of 16
being a maximum result of 10, 64 being 50, 128 being 100, 512
being 500 and all subsequent sizes being 1000. I further explore
single index query times in Appendix 2

In summary, an index size of 512 appears to be a suitable choice for
balancing query and build times, using a maximum results in range
of 20-50, to balance the tradeoff between speed and recall. These
results may vary with the dimensionality of the data. A considerable
gap in this study is that I did not evaluate the effects of the number
of trees hyperparameter, which could further improve performance.
Appendix 4 contains a preliminary test of the number of trees on
query time, but unfortunately I did not have time to explore this
further in this paper.

5.3.2 HNSW Index Results

In this section I evaluate the HNSW index and the impact of the
hyperparameters M and the max results to return, to compare
similarities with the Annoy index. I used the default hyperparameters
given by Faiss [51] for efConstruction (40), and efSearch (16).
Investigating the effects of adjusting these parameters could be a
suitable area of further research.

Figure 5.7: M vs Accuracy Figure 5.8: HNSW Build Times

25



Accuracy Figure 5.7 shows the recall of the HNSW index increases
with M up to M=250, after which there is no significant improvement.
Notably, the HNSW index exhibits remarkably low recall. Increasing
efConstruction and efSearch from their defaults may help improve
the results.

Build Time Figure 5.8 illustrates how the M hyperparameter affects
build time. As M increases, the number of connections in each layer
increases, leading to longer index add times. This also causes an
increase in the final binary size (Appendix 3), which may have led to
the increase in build times at larger values of M.

Figure 5.9: HNSW query times vs M & Max results

Query Time Figure 5.9 shows the impact of the M parameter on
query times and the number of results to return. M has little effect on
query time, but a large effect on load time, which could be due to
the increased index binary size (Appendix 3). The maximum number
of results to return increases query time, due to the larger priority
queue, as explained in section 4.4.2.

My experiments showed that HNSW searches approximately 60
times faster than a single Annoy index, with somewhat comparable
build times. The HNSW loads slightly slower, with a single Annoy
index lazily loaded in 0.02 seconds, but this is not a significant factor
due to Annoy’s extremely long query time.

When running these tests it is clear that the efConstruction and
efSearch hyperparameters must be further adjusted in order to
achieve acceptable recall. This index may be useful for larger
datasets but its current state renders it unviable.

26



5.3.3 Flat L2 Index Results

Statistic Time (s)

Index add time 1.0630

Build time 0.0538

Table 5.3: Flat L2 Index build
times

Figure 5.10: Flat L2 index query
times vs max results.

I used a single index for the entire dataset, as it has perfect recall
there would be no effect on changing the size of the index. A Flat
index is equivalent to a list of tensors, and has over 10 times faster
build times compared to Annoy and HNSW, shown in Table 5.3.

Figure 5.10 shows that a linear scan is performant over our dataset
of 20,120 images. The index searches the dataset between 0.5 and
1.25 seconds, considerably faster than the Annoy index, but ~10x
slower than the HNSW index. I expect the search times to scale
linearly with the size of the dataset. Further research could explore
the impact of an even larger dataset and how it affects the query
performance.

5.4 Summary

My results demonstrate that ViTs perform better than ResNets on
both inference speed and accuracy. I find ViT-B/32 to be a suitable
tradeoff between the two factors. For a higher accuracy to speed
tradeoff, ViT-B/16 can be used, which is 3 times slower, but has
comparable Top-1 and Top-5 accuracy (1.42% and 0.95%
respectively) to ViT-L/14 while being 6.7 times faster. These results
were obtained on a CPU, so may vary when using a GPU or different
hardware.

I found that CLIP embeddings under-classified certain labels, such
as “person”. This could be improved with engineering more detailed
prompts, such as “a photo of a [label]”.

When evaluating the ANN index performances the Annoy index was
found to have significantly inferior performance to both HNSW and

27



Flat indexes. This outcome may be due to the high-dimensionality of
the CLIP embeddings, which may not be suitable for tree-based
search due to the curse of dimensionality [11, 12]. Increasing max
results (and therefore search k) was found to improve recall, likely
because distances to more elements were calculated, thereby
approximating a Flat index. Alternatively, further finetuning of the
hyperparameters number of trees may result in a better outcome.
The unsuitability of the Annoy index is illustrated in the fact that the
Flat index linear scan outperformed Annoy across build, load and
query times, as well as binary size (Appendix 5) while providing
perfect recall.

Index Query Time (s)

Flat 0.00615

HNSW 0.0015

Annoy 0.06325

Table 5.4: Single index time query time for 1000 results

HNSW demonstrates the fastest search time, 4x faster than the Flat
index. Annoy demonstrated a much slower search time, at 10x
slower than the Flat linear scan, while also not having the same
guarantees of perfect recall as the flat index.

For the 20,120 image dataset, I found the Flat index to be the most
suitable choice. Although the HNSW index searches 4x faster than
the Flat index, the build times are 10x slower. This tradeoff may be
acceptable; however the HNSW index’s recall performance is
significantly worse compared to the perfect recall of the Flat index.

The efConstruction and efSearch hyperparameters may need to be
further adjusted for the index to become viable. I believe the Flat
index also performed well due to its simplicity and distinct lack of
hyperparameters, which allowed it to perform well without any
finetuning. Further research could include a range of dataset sizes to
test how the indexes scale with the number of elements.

28



6 Conclusion
My experiments indicate that the LaF model did not live up to the
expectations set in the literature review. The “Leaner and Faster”
paper claimed 1.6x faster image inference over ViT-B/32, while my
results show it to be 1.94x slower, while also giving worse accuracy.

For all my ANN index experiments I used the LaF embeddings.
Unfortunately when evaluating LaF I found that the embeddings had
a wider distribution of angular distances (Figure 5.3) compared to
other models I evaluated. I believe this may have caused an
unrealised impediment on the accuracy of the Annoy and HNSW
indexes. If I were to do this again, I would use one of the official
OpenAI model embeddings to test the indexes.

Due to time constraints, I could not comprehensively evaluate the
number of trees hyperparameters for the Annoy index, instead
choosing to focus on comparison with other libraries, namely Faiss
with the HNSW and Flat index. Additionally, I did not fully evaluate
the efConstruction and efSearch hyperparameters of the HNSW
index, which may have contributed to why the index performed so
poorly in recall. This research could be continued to further evaluate
the effects of these parameters.

In my experiments the Flat index had the best overall performance.
However, for larger datasets, I believe a Flat index may become
unviable, necessitating the use of approximation algorithms such as
HNSW. It was surprising that the Flat index remained effective with
over 20,000 images. Further research would require a larger dataset,
such as the training data for ImageNet DET which contains over
1,000,000 images. Evaluating the performance of each index over a
range of dataset sizes could also lead to interesting results.

While I evaluated model and index binary size, a good heuristic for
the number of parameters in a model, I did not assess the memory
usage. Memory usage as a performance metric may serve as a
valuable factor in evaluating performance. Annoy claims it has low
memory usage compared to other indexes.

My analysis does not consider the impact of prompt engineering.
Currently for each label the prompt is given as: “[label]”. A potential
avenue of further research could involve whether different prompts
lead to better results. In the original CLIP paper, the prompt “A photo

29



of [label]” was used, which may have yielded better results,
particularly for under-classified prompts such as “person”.

6.1 Architectural improvements

CLIP models are trained with both a variety of ViTs and ResNets,
however the training method is generic and could be applied to any
architecture capable of processing images and text. A notable new
architecture is SWIN [44], which has been demonstrated to be more
efficient by dynamically adapting to the input data using shifted
windows. However, no publicly released model to date has applied
the SWIN architecture to the CLIP training process. This could be an
area of further research

An improvement to the indexing method could be using a vector
database such as Weaviate [45]. These databases have recently
become popular for storing vectors in a HNSW index with
complimentary data, potentially offering more efficiency than my
solution of an external ANN index paired with an SQLite database.
However, my current approach enabled the comparison of different
potential indexes and their hyperparameters, which may be more
informative than a “black box” vector database.

6.2 Further research in other mediums

My implementation generalises well to other vision tasks, such as
natural language search on video. Video retrieval essentially involves
image retrieval over multiple frames. A potential implementation
could use an object detector such as SSDLite [27, 28] RetinaNet [29]
or the Yolov7 backbone [30], on the video stream to identify specific
regions of a frame to create embeddings.

This would be a useful application for devices such as CCTV
cameras, enabling dynamic searches over hours of video. These
devices would likely be compute and memory constrained, so fast
and small models and indexes are essential. A suitable choice would
be the ViT-B/32 with a Flat index. The Flat index has extremely low
build times, allowing multiple indexes to cover different time periods
and enabling users to search only a subset of the embeddings. The
ViT-B/32 had the fastest inference speed of any model, at 28.5
embeddings / second. This may be able to run real time in future
applications. However it is important to note that inference was ran
with more powerful hardware than that that would be available on an
IoT device such as a CCTV camera.

30



7 Appendices
Appendix 1 SQL Schema

I first created this schema with video also in mind, but to use just on
the image dataset we can safely ignore the video and detection
tables.

When an index is created, a corresponding row is added to the
index table. When an image is added to this index, it is first
inserted into the image table, with its ID serving as a reference for
future index-related operations.

The addition of an image to the index requires invoking the
add_item function of the index's public API discussed in 4.2. This
function appends the item to the index and returns a distinct local ID
for the item within the index, known as the index_ref_id. It is
crucial to note that this local ID may differ from the image_id. While
some indexes may use these identifiers interchangeably, doing so
may cause significant issues in others. For instance, when adding an
item to an Annoy index, memory is allocated for max(id) + 1
items. If an image with ID 1023 is added to an index of size 16,
memory allocation for 1024 items will occur, thereby causing a
substantial increase in the index size.

The index_image table serves as a bridge, connecting the
index_id and an index_ref_id to an image_id. When saving
an index, its filename is set to index_id, enabling the retrieval of
the original image_id using the index_id and the index_ref_id
returned by the query.

When the pipeline processes a video, the overall procedure remains
mostly unchanged. The object detector identifies “interesting”
sections of the video frames and adds these "detections" to the
detection table. This table stores the video_id, the bounding box
of the detection, and the detection timestamp. These detections are
then added to the index and linked in the index_image table using
the detection_id.

The final constraint to impose in this design is to ensure that either
image_id or detection_id is set in the index_image table, but
not both simultaneously. This constraint can be incorporated directly
into the SQL schema using the following expression: CHECK

31



(image_id IS NOT NULL XOR detection_id IS NOT
NULL).

Figure 7.1: Image retrieval SQL schema

By adhering to this design principle, the retrieval pipeline can
efficiently handle both image and video data while maintaining the
integrity and consistency of the indexing process.

32



Appendix 2 Annoy Single Index Query Time

Figure 7.2: Single index query times vs index size & max results

While Figure 5.6 showed that a larger index resulted in a shorter
query time, Figure 7.2 shows that a single large index takes longer to
search than a smaller index. Therefore the smaller indexes take
longer to search because of the larger number of them

33



Appendix 3 HNSW Binary Size

M Index size (MB)

32 45

64 49

128 59

256 79

512 118

1024 197

2048 354

Table 7.1: Effect of M on HNSW index size

Table 7.1 shows how M affects the final index size in HNSW indexes.
M is a hyperparameter that refers to the maximum number of
neighbours per layer. As Table 6.1 shows, a larger value of M results
in a larger index binary size.

34



Appendix 4 Number of Trees Preliminary Analysis

Figure 7.3: Effect of number of trees on search time.

Figure 7.3 shows the effect of the number of trees on search time. A
larger number of trees requires more binary tree searches for each
one, so increases the search time of the index.

Appendix 5 Comparing Binary size of the indexes

Index Size (MB)

Annoy 299

Flat 39

HNSW (256) 79

Table 7.2: Built index binary size

Figure 7.2 shows the binary size of each index. As we expect the
Flat index is the smallest due to its simple design. The Annoy index
is a single index of all 20120 images, and is over 3x the size of the
HNSW index.

35



Appendix 6 Analysing CLIP Embeddings

Figure 7.4: Top 5 labels for each of the images (ViT-B/32), illustrating
the effect of NLP in image retrieval.

986/2777 (35.5%), of correctly classified dog images incorrectly
classify the image as also containing a tennis ball in the top 5. This
is because CLIP largely associates tennis balls with dogs, so even if
the image does not contain a ball, the similarity of a tennis ball
embedding to an image of a dog is enough to get it in the top 5
images. Figure 6.4 illustrates this in the bottom left image.

The top 2 images of Figure 7.4 further show this phenomenon. Dogs
in the snow identifies highly with “snowplow” and “snowmobile”,
even though there’s clearly neither in the photo, because these
labels are similar to the snow in the picture.

Finally as you can see in the bottom right image, the model finds a
high similarity with iPod, even though it is not visible in the scene,
but the model infers this from the device being hidden in his hand
and the headphones he has on. Further, the stethoscope and
stretcher are very similar in this image, while again clearly not in the
scene, as they have a high similarity to the crutches. Again the
“person” tag is not identified, even though clearly in the image.

This illustrates the importance of prompt engineering, CLIP performs
much better with specific descriptions.

36



Appendix 7 Annoy Single Index Load Time

Figure 7.5: Single index load time

Figure 7.5 shows that the index load time is constant from index
sizes 16-512 and 1024-20120. I believe this is because at 1024 the
index is lazily loaded, which further reduces the initial load times.

37



Bibliography

[1] A. Vaswani et al., ‘Attention Is All You Need’. arXiv preprint arXiv:1706.0376.
2017

[2] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning
applied to document recognition," in Proceedings of the IEEE, vol. 86, no.
11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘ImageNet Classification with
Deep Convolutional Neural Networks’, in Advances in Neural Information
Processing Systems, 2012, vol. 25.

[4] O. Russakovsky et al., ‘ImageNet Large Scale Visual Recognition Challenge’.
arXiv preprint arXiv:1409.0575, 2014.

[5] A. Dosovitskiy et al., ‘An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale’. arXiv preprint arXiv:2010.11929, 2020.

[6] A. Radford et al., ‘Learning Transferable Visual Models From Natural
Language Supervision’. arXiv preprint arXiv:2103.00020, 2021.

[7] R. Beaumont, ‘Clip Retrieval: Easily compute clip embeddings and build a
clip retrieval system with them’, GitHub repository. GitHub, 2022.

[8] C. Schuhmann et al., ‘LAION-5B: An open large-scale dataset for training
next generation image-text models’. arXiv preprin: arXiv:2210.08402, 2022.

[9] Criteo, ‘autofaiss: Automatically create Faiss knn indices with the most
optimal similarity search parameters.’, GitHub repository. GitHub, 2023

[11] P. Indyk and R. Motwani, ‘Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality’, Conference Proceedings of the
Annual ACM Symposium on Theory of Computing, pp. 604–613, 2000.

[12] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA: Princeton
University Press, 1957.

[13] P. D. Cunningham and S. J. Delany, ‘k-Nearest Neighbour Classifiers - A
Tutorial’, ACM Computing Surveys, vol. 54, no. 6, pp. 1–25, Jul. 2021.

[16] E. Bernardsson, ‘Approximate Nearest Neighbors Oh Yeah’, GitHub
repository. GitHub, 2023.

[17] D. Yan, Y. Wang, J. Wang, H. Wang, and Z. Li, ‘K-nearest Neighbor Search
by Random Projection Forests’, in 2018 IEEE International Conference on Big
Data (Big Data), 2018.

[20] M. Kerrisk, "The Linux Programming Interface," No Starch Press, 2010.

38



[21] Y. A. Malkov and D. A. Yashunin, ‘Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs’. arXiv
preprint arXiv:1603.09320, 2016.

[22] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, ‘Scalable Distributed
Algorithm for Approximate Nearest Neighbor Search Problem in High
Dimensional General Metric Spaces’, 08 2012, pp. 132–147.

[23] W. Pugh, ‘Skip Lists: A Probabilistic Alternative to Balanced Trees’, Commun.
ACM, vol. 33, no. 6, pp. 668–676, Jun. 1990.

[24] Paul E. Black, "greedy algorithm", in Dictionary of Algorithms and Data
Structures [online], Paul E. Black, ed. 2 February 2005. (accessed 2/5/2023)
Available from: https://www.nist.gov/dads/HTML/greedyalgo.html

[25] S. Ren and K. Q. Zhu, ‘Leaner and Faster: Two-Stage Model Compression
for Lightweight Text-Image Retrieval’. arXiv preprint arXiv:2204.13913, 2022.

[26] G. Hinton, O. Vinyals, and J. Dean, ‘Distilling the Knowledge in a Neural
Network’. arXiv preprint arXiv:1503.02531, 2015.

[27] W. Liu et al., ‘SSD: Single Shot MultiBox Detector’, in Computer Vision -
ECCV 2016, Springer International Publishing, 2016, pp. 21–37.

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘MobileNetV2: Inverted Residuals and Linear Bottlenecks’, 2018.

[29] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘Focal Loss for Dense
Object Detection’. arXiv preprint arXiv:1708.02002, 2017.

[30] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, ‘YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors’.
arXiv preprint arXiv:2207.02696, 2022.

[31] Princeton University, “WordNet | A Lexical Database for English,”
Princeton.edu, 2019. https://wordnet.princeton.edu/

[32] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, ‘Deep Networks
with Stochastic Depth’, Lecture Notes in Computer Science, pp. 646–661,
2016.

[33] M. Tan and Q. V. Le, ‘EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks’, arXiv preprint arXiv:1905.11946. 2020.

[32] K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep Residual Learning for Image
Recognition’, arXiv preprint arXiv:1512.03385 . 2015.

[33] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, ‘Scaling Vision
Transformers’, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 12104–12113.

39



[34] J. Deng, R. Socher, L. Fei-Fei, W. Dong, K. Li, and L.-J. Li, ‘ImageNet: A
large-scale hierarchical image database’, in 2009 IEEE Conference on
Computer Vision and Pattern Recognition(CVPR), June 2009, pp. 248–255.

[35] G. Ilharco et al., OpenCLIP. Zenodo, 2021.

[36] X. Jiao et al., ‘TinyBERT: Distilling BERT for Natural Language
Understanding’, arXiv preprint arXiv:1909.10351 . 2020.

[37] T. Cormen ‘Introduction to Algorithms’, MIT Press, p. 253, 2009.

[38] T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor, ‘ImageNet-21K
Pretraining for the Masses’, arXiv preprint arXiv:2104.10972. 2021.

[39] X. Chen, C.-J. Hsieh, and B. Gong, ‘When Vision Transformers Outperform
ResNets without Pre-training or Strong Data Augmentations’, arXiv preprint
arXiv:2106.01548. 2022.

[40] S. Liu and H. Lu, ‘Learning Better Encoding for Approximate Nearest
Neighbor Search with Dictionary Annealing’, arXiv preprint arXiv:1507.01442.
2015.

[41] R. Guo et al., ‘Accelerating Large-Scale Inference with Anisotropic Vector
Quantization’, in International Conference on Machine Learning, 2020.

[42] E. S. de Moura and M. A. Cristo, ‘Inverted Files’, in Encyclopedia of
Database Systems, L. Liu and M. T. Özsu, Eds. Boston, MA: Springer US,
2009, pp. 1571–1574.

[43] G. Brodal, ‘A Survey on Priority Queues’, Jan 2013.

[44] Z. Liu et al., ‘Swin Transformer: Hierarchical Vision Transformer using Shifted
Windows’, in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021.

[45] E. Dilocker et al. ‘Weaviate’. Github Repository, Github. 2023

[44] A. Li, A. Jabri, A. Joulin, and L. van der Maaten, ‘Learning Visual N-Grams
from Web Data’, arXiv preprint arXiv:1612.09161. 2017.

[45] G. Forman and M. Scholz, ‘Apples-to-Apples in Cross-Validation Studies:
Pitfalls in Classifier Performance Measurement ABSTRACT’, SIGKDD
Explorations, vol. 12, pp. 49–57, 01 2010.

[46] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, ‘Johnson-Lindenstrauss
Lemma, Linear and Nonlinear Random Projections, Random Fourier
Features, and Random Kitchen Sinks: Tutorial and Survey’, arXiv preprint
arXiv:2108.04172. 2021.

[47] “What is Residual Connection?” Towards Data Science. (accessed 5/2/23)
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55

40



[48] “Nearest neighbors and vector models – part 2 – algorithms and data
structures.” erikbern.com.
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part
-2-how-to-search-in-high-dimensional-spaces.html (accessed 5/2/23)

[49] W. Muła, Wikimedia Commons.
https://en.wikipedia.org/wiki/Skip_list#/media/File:Skip_list.svg (accessed
5/2/23)

[50] “Hierarchical Navigable Small Worlds (HNSW) | Faiss: The Missing Manual.”
pinecone.io. https://www.pinecone.io/learn/hnsw/ (accessed 5/2/23)

[51] J. Johnson, M. Douze, and H. Jégou, ‘Billion-scale similarity search with
GPUs’, IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2019.

[52] A. Paszke et al., ‘PyTorch: An Imperative Style, High-Performance Deep
Learning Library’, in Advances in Neural Information Processing Systems 32,
Curran Associates, Inc., 2019, pp. 8024–8035.

41

https://en.wikipedia.org/wiki/Skip_list#/media/File:Skip_list.svg
https://www.pinecone.io/learn/hnsw/

